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ABSTRACT
Teaching robots can be challenging, particularly for novice human
users who struggle to understand the robot’s learning process. Cur-
rent research in interactive robot learning lacks effective methods
for assessing a user’s interpretation of the robot’s learning state,
which makes it difficult to compare different teaching approaches.
To address these issues, we propose and demonstrate a method for
assessing the user’s interpretation of the robot’s learning state in
an interactive learning scenario with a robotic manipulator. Ad-
ditionally, we draw on existing literature to categorise types of
interface interventions that can enhance the human-robot teaching
process for novice users – both pragmatically and hedonically. In a
user study (N=30), we implement two of these interventions and
show how they improve robot performance, teaching efficiency and
interpretability. These findings provide preliminary insights into
the design of effective human-robot teaching interfaces and can be
used to assist the development of future teaching approaches.
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• Human-centered computing → HCI design and evaluation
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1 INTRODUCTION
Programming a robot can be a challenging and time-consuming task
that requires specialized skills and knowledge. It may be beyond
the capabilities of many people, and pre-programmed robots can-
not accommodate the specific preferences of every user. To make
human-robot interaction more intuitive and accessible to a wider
audience, it is important to enable laypeople to teach robots tasks
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just as they would teach another person. A common approach for
intuitive human-robot teaching is Learning from Demonstration
(LfD), where the teacher demonstrates the task to the robot. How-
ever, one major challenge in this approach is the user’s inability
to understand the robot’s learning process, especially when the
teacher lacks expertise in programming or robotics. This knowl-
edge gap presents a significant obstacle to effective human-robot
teaching, and addressing it is critical to developing more intuitive
and user-friendly human-robot interfaces.

With the need to facilitate the communication between human
and robot, Explainable Artificial Intelligence (XAI) is increasingly
being employed in Human-Robot Interaction (HRI), aka Explain-
able Robotics [48]. The metrics in XAI are however typically for
assessing the system’s explainability after its task execution [23]. In
other words, the focus has been on explaining to the user why the
agent has made a particular decision in one scenario. This presents
limitations in human-to-robot teaching. How could the teacher
understand the overall picture of the robot’s mental model during
teaching?

In a human-human teaching process, a way to gauge the learner’s
current learning state has been to evaluate the student’s test perfor-
mance. However, it would be unrealistic to be examining the robot
at every step due to the greater time and resources required for the
robot’s physical movements. In between tests, the teacher should
also have an idea of the student’s learning state. In human-human
teaching, this could be based on the student’s facial expressions (i.e.
confusion or confidence), questions, or remarks. As human teach-
ers have also been learners, they can rely on the Theory of Mind
(ToM) [16] to use their past learner experience to build a model of
their human students. In the case of a robot learner, the teacher
cannot use ToM as the robot does not learn like a human student.
This often leads to misinterpretation of the robot’s learning status
and may therefore induce teaching mistakes [27, 51]. Hence this
exacerbates the need for an approach that allows a novice user to
better understand the robot.

In order to more effectively evaluate between different teaching
approaches, the interpretability of the robot’s learning state must be
considered. However, there does not yet exist in literature a method
for quantitatively assessing the human teacher’s interpretation of
the robot’s learning state.

How can the human-robot interface, or the bi-directional com-
munication between human and robot [60], be used to improve
the human-robot teaching experience? How can we quantitatively
assess robot interpretability between different approaches? In this
paper, we address these issues. Our contribution are:

• A categorisation and definition of four user interface (UI)
interventions to the LfD pipeline in HRI used for improving
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the human experience.We provide examples for each of these
categories and demonstrate in a user study to show how two
of these interventions can be used to improve human-robot
teaching.

• A method for quantitatively assessing the human’s interpre-
tation of the robot’s learning state. We also demonstrate our
proposed method in a user study.

Our proposed categories offer valuable guidance for both researchers
and practitioners in the field of human-robot teaching, serving as a
useful design framework. Additionally, our proposed quantitative
interpretability assessment provides a crucial tool for evaluating
human-robot teaching approaches, offering a clear path forward
for improving the field’s methods and outcomes.

2 BACKGROUND AND FORMALISATION OF
LEARNING FROM DEMONSTRATION

In 2010, Billing and Hellström [3] formalised the concepts in Learn-
ing from Demonstration (LfD). The task space 𝐵 represents the goal
behaviour for the robot that the human is trying to teach. In LfD,
the human teacher performs a set of demonstrations𝑏 = {𝛽1, ..., 𝛽𝑛}
for the robot learner, where 𝛽𝑖 represents a single demonstration.
The policy derivation, or learning, of the robot is the selection of 𝜋
from the controller space Π by using the learning function 𝜆:

𝜋 = 𝜆 (𝑏) ∈ Π (1)

The robot then uses the realization function Λ to map the con-
troller 𝜋 to a task realisation 𝑟 from the set of all possible tasks the
robot is capable of performing 𝐼ℎ .

𝑟 = Λ(𝜋 ) ∈ 𝐼ℎ (2)

In 2020, Sena and Howard [47] extended this formalization to
show how the human teaching behaviour for a robot learner could
be quantified (Fig. 1). Their framework introduced a model of
the teacher’s belief space. In particular, the human teacher’s es-
timated robot’s learning state �̃� is obtained from using an interpre-
tation function 𝜔 on the observed robot’s task execution 𝑟 and the
teacher’s bias, 𝑄 .

�̃� = 𝜔 (𝑟,𝑄) (3)

In this context,𝑄 (the teacher’s bias) has been defined to capture
factors which are difficult to measure, such as the human mental
state or their prior expectation of the learning. In order to select the
next set of demonstrations 𝑏 (𝑛+1) for the robot, the teacher uses
their estimate of the robot’s current learning state �̃�, the teacher’s
estimation of the task space �̃�, the set of demonstrations already
given 𝑏 (𝑛) and the teacher’s bias 𝑄 .

𝑏 (𝑛+1) = Ω (�̃�, �̃�, 𝑏 (𝑛) ,𝑄) (4)

As the purpose of teaching is to allow for the robot to be able
to perform the intended task, the human’s teaching efficacy can
be defined as the portion of the task space that the robot is able to
perform correctly:

𝜖 =
|𝑅 ∩ 𝐵 |
|𝐵 | , 𝜖 ∈ [0, 1] (5)

The teaching efficiency 𝜂 is the teaching efficacy 𝜖 normalized
by the number of demonstrations required to achieve efficacy 𝜖 :

𝜂 =
𝜖

|𝑏 | , 𝜂 ∈ [0, 1] (6)

Indeed, with higher quality demonstrations, the robot would
be able to achieve the same efficacy with a smaller number of
demonstrations. Note that here the term “efficiency” is limited in
that it only takes into account the number of demonstrations and
not the complexity of the demonstrations, the time spent, or the
resources required.

In the next section, we describe four types of user interface (UI)
interventions to the LfD pipeline which may help to improve the
teaching process.

Figure 1: The human-robot demonstration teaching pipeline
(adapted from [47]). The highlighted areas are our proposed
placements of user interface interventions.

3 USER INTERFACE INTERVENTIONS FOR
IMPROVING HUMAN-ROBOT TEACHING

The user experience of robot teaching can be improved in two
different ways: via pragmatic or hedonic qualities [7, 17]. Improv-
ing robot teaching by focusing on pragmatic qualities would, for
instance, be working towards increasing the teaching efficacy or
efficiency. On the other hand, improving hedonic qualities could
be comprised of reducing the teacher’s mental load, increasing
user engagement, or increasing user trust. For instance, by being
transparent and visualising information concerning the robot or
its environment to the user, this can increase user trust [46]. By
presenting information to the user instead of relying on the user to
memorise every detail, this can reduce the cognitive load for the
human teacher – which may increase human trust in the robot [2].
Note that improving pragmatic qualities could also in turn improve
hedonic qualities. For example, by improving the teaching effec-
tiveness, this may increase perceived agent competency, thereby
possibly inducing greater user trust and engagement [40].

In this paper, we focus on improving pragmatic qualities. The
components in the human-robot teaching pipeline can be seen in
Fig. 1. What user interface (UI) interventions can be made to the
pipeline to improve the process? Firstly, the learner’s internals,
such as its policy derivation and execution, are dependent upon
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the algorithms of the robot and hence are removed from the candi-
dates for UI interventions. Hence, now there remain three parts: 1)
the teacher’s internals, 2) the demonstration set given to the robot
𝑏, and 3) the observed task realisation 𝑟 . UI interventions can be
applied to these three locations. The teacher’s internals however
lack precision due to the many variables involved, and hence need
to be broken down. The interpretation function 𝜔 and the demon-
stration set update function Ω vary from person to person. Hence
we instead focus on the variables given to them: �̃�, �̃�, 𝑏,𝑄, and 𝑟 .
The variables 𝑏 and 𝑟 have already previously been identified as
places of possible interventions. This leaves the teacher’s bias 𝑄 ,
the teacher’s interpretation of the learner state �̃� and the teacher’s
estimation of the task space �̃�. As �̃� is fully reliant on 𝑟 and 𝑄 –
see Eq. (3) – which have both already been identified as possible
places of UI interventions, �̃� can be left out. We therefore identify
two additional areas that can be improved on: 𝑄 and �̃�. Hence, we
propose the following four categories of UI interventions that can
be made to assist in the LfD pipeline:

(1) Intervention on 𝑏 (demonstrations given to the robot)
(2) Intervention on 𝑟 (the observed task realization)
(3) Intervention on 𝑄 (the teacher’s bias)
(4) Intervention on �̃� (the teacher’s beliefs regarding the task

space)
Note that by improving one of the factors mentioned (e.g. 𝑟 ), this

may consequently improve the quality of the demonstrations given
to the robot 𝑏. However, here these intervention types signify the
exact variable that is being directly improved on.

We produced visual examples of these different interventions in
mixed reality (MR), using the development platform Unity in Figs. 2,
3, 4, and 6. We used MR as it is a technology that has the ability
to overlay digital information over the physical world [34]. These
interventions may be done via other means (e.g. the traditional
computer screen), however, comparing MR with other methods is
out of our work’s scope.

3.1 Intervention on the demonstrations given to
the robot 𝑏

The human demonstration from a novice can be sub-optimal due
to several reasons including the difficulty of operating the robot,
or the high cognitive load required to memorise given demonstra-
tions. Here we present some possible interventions that may help
to improve the human demonstrations 𝑏 to the robot.

3.1.1 Incorrect demonstrations. The authors in [47] suggested that
a common teaching failure includes the teacher providing incorrect
demonstrations. This may arise due to a number of factors includ-
ing the teacher not being able to operate the robot correctly, or
the teacher making errors due to the high cognitive load required
when teaching a robot. The UI intervention can be introduced to
allow for the ability to go back in time and delete or modify past
demonstrations to decrease the number of incorrect demonstrations
for the robot (Fig. 2a). Timelines can be shown in the display to the
user (e.g. [33]). Users rewinding to a particular point in time to give
corrective demonstrations to the agent learner is already possible
[59]. This could be extended to allow for users to modify their own
past demonstrations – an “artificial timeline” [39]. By letting the

(a) (b)

(c)

(d)

Figure 2: Improving demonstrations given to the robot. (a)
The user could choose to edit or delete the demonstration
upon an incorrect demonstration, (b) the user could review
past demonstrations and the application warns the user of
high similarity to past demonstrations, (c) the user can con-
trol the robot by interacting with the virtual robot in MR, (d)
the user provides way points (green spheres) for the robot
arm by indicating the point in the MR interface

user “time travel”, the user can more closely examine their teaching
and mistakes can be corrected.

3.1.2 Redundant demonstrations. Redundant demonstrations have
also been put forward as another common reason for teaching fail-
ures [12, 47]. These are demonstrations which do not sufficiently
differ from the prior demonstrations given, and hence lower the
teaching efficiency. By being able to review past demonstrations,
this can also help the user detect redundant demonstrations. A sys-
tem for calculating and detecting demonstration similarity could
be implemented to notify the user during a new demonstration
(Fig. 2b). As proposed in previous literature [47], this can be ac-
complished by having some measure of similarity 𝑠 between the
current demonstration 𝛽𝑛 and previous demonstrations 𝛽1, ..., 𝛽𝑛−1
and checking that it does not exceed the ambiguity threshold 𝛿𝑎 :

𝑠 (𝛽𝑛, {𝛽1, ..., 𝛽𝑛−1}) ≤ 𝛿𝑎 (7)

Once the similarity is exceeded, the user can be informed. S/he now
has the option to abort or continue with the demonstration. By
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minimising demonstration ambiguity, the teaching efficiency can
be improved.

3.1.3 Action Mapping. A known difficulty in LfD is the retargeting
problem [8] – where human actions from demonstrations must be
mapped to robot actions. This problem can traditionally be bypassed
by guiding the robot through kinesthetic interactions [6, 25, 26].
However, direct physical contact with the robot may not always be
ideal or possible. Robots’ motions can instead be guided through
human teleoperation via a joystick such as in [10, 24, 50], or via
interacting with the virtual model of the robot/other virtual objects
(Fig. 2c) such as in [15, 18, 28, 41, 58] where the user may click and
drag a virtual object to control the robot movements. In the case of
motor impairment, user gaze may be mapped to robot actions in
brain-computer interfaces [11, 56]. It can be referred to as providing
“Augmented Control” [39] to the user.

UI interventions may therefore allow for novices to better trans-
late their actions to those of the robots’.

3.1.4 Spatial mapping. For the novice user, translating their 3D
space problem into coordinates for the robot could be difficult and
unintuitive. UI interventions however can be employed to visualise
to the user the points in 3D space (Fig. 2d). This is already being
done in multiple non-learning HRI tasks such as allowing for the
user to provide waypoints for the robot via MR [29, 42, 54] or
presenting data more intuitively by spatially constructing virtual
scenes [43, 44].

3.2 Intervention on the observed task
realization 𝑟

(a) (b)

Figure 3: Improving the observed task realization. (a) The ap-
plication shows the simulated path of the robot arm without
the need for the robot to move physically, (b) To better un-
derstand the robot’s current knowledge, the user can enquire
about specific tasks via the interface. In the figure, the user
can select a test object for the robot to sort.

For the teacher to better understand the learner’s state, the task
executions observed by the teacher are crucial. The following are
some possible ways UI interventions could help to improve the
observed task realisation:

3.2.1 Increasing the number of task realizations. To better under-
stand the learner’s state, the teacher may wish to see the robot’s
performance after a certain number of demonstrations. However,
by requiring the robot to perform the tasks physically, this may
impose time and resource constraints. By allowing for the simulated
trajectories of the robot to be shown such as in [13, 36, 38], or the

visual example in Fig. 3a, this can avoid these constraints, particu-
larly time. This allows for a greater number of task executions for
the same time length, and can therefore improve the set of 𝑟 for the
same amount of time and resources.

3.2.2 Enquire about specific task executions. In human-human
teaching, the teacher typically asks the student specific questions
to have a better idea of the student’s state. This is akin to the use of
validation sets in traditional machine learning. Validation set results
help to shape the machine’s subsequent learning, while informing
the human of its current learning state [20, 45]. In interactive robot
learning however, the teacher may wish to test the robot’s ability
by assigning a task to it at arbitrary points in the teaching process,
rather than only at the end of epochs. Moreover, the teacher may
wish to change the test each time to better understand the robot. To
enable this, an interface can be employed to facilitate the process
of asking the robot to execute specific tasks (see our example in
Fig. 3b). The UI, for instance, may assist with this by superimposing
a virtual robot onto the physical robot to carry out the task without
the need to reset the real robot, or objects such as in [22, 35].

3.3 Intervention on the teacher’s bias 𝑄

(a)

(b)

Figure 4: Intervention on the teacher’s bias. (a) The range of
the robot arm is indicated on the display as an orb around
the robot, (b) The robot’s decision tree is presented on the
user display,

The variable 𝑄 captures the teacher’s bias. However, in order to
better formulate how to improve teaching, 𝑄 can be broken down
to be composed of the human’s:

• beliefs of the robot’s operational capabilities,
• beliefs of the robot’s mental model, and
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• other biases
Other biases include the human’s personal biases, mental state

at the time and any other biases. Improvement to these is out of
this work’s scope and henceforth we will focus on the first two for
this subsection.

3.3.1 The robot’s operational capabilities. A novice user may not
be aware of the range limit of the physical robot’s arm, or the
positional/rotational constraints of the robot’s physical parts. By
showing these capabilities visually to the user such as in [1, 32, 37]
and Fig. 4a, this could lead to a more efficient teaching process due
to less need for adjustments. Furthermore, instead of simply present-
ing this information to the user in the form of a handbook, visually
displaying these thresholds and limits can be more comprehensible,
especially to novices.

3.3.2 The robot’s mental model. Amajor challenge in human-robot
teaching is the mental barrier between the human teacher and
the robot learner. Usually in human-human teaching, the human
teacher is able to put her/himself in the student’s perspective as
s/he has been in that position before as a student. However, this is
indeed not the case for human-robot teaching as the teacher has
not been a robot learner before. The complication further increases
when the teacher in question is a novice user. Therefore information
regarding the robot’s understanding needs to be conveyed in a way
that is easy for a human to understand. The UI has been used to show
graphical [31] (e.g. Fig 4b) and semantic representations [14, 55]
of the robot’s understanding and learning process for the task. In
previous literature, it has also been used by the robot to point out
particular objects in the user’s view by, for instance, overlaying a
virtual circle [57], an arrow or even a virtual arm for the robot for
referring to objects [21]. The robot’s intent has also been shown
through arrows, waypoints or even the robot’s virtual eye gaze [53].
Although some of these methods may not be specifically intended
for human-robot teaching, it is evident that there are many different
ways for the human to better understand the robot learner’s mental
model.

3.4 Intervention on the teacher’s beliefs of the
task space 𝐵

Figure 5: Venn diagram of the actual task space 𝐵 and the
user’s understanding of the task space �̃�.

Billing and Helström [3] formalised the concept of the task space,
or intended behaviour 𝐵. Sena and Howard [47] then extended the
formalisation to include �̃� to represent the teacher’s estimation
of the task space. Although there is a distinction between 𝐵 and
�̃� (see Fig. 5), there has not yet been much effort to examine the
significance of the distinction. Here we dissect what the areas of
misalignment can imply, and propose how a UI intervention may
help.

(a) (b)

Figure 6: Improving the teacher’s understanding of the task
space. (a) The MR interface presents a scenario in which an
object is out of the robot’s range and asks if it needs to learn
what to do in this situation (b) The user is notified via the
display that this demonstration may be outside of the task
space intended.

Where 𝐵 is the actual task space and �̃� is the human teacher’s
beliefs of the task space, 𝐵 \ �̃� represents the actual task space that
the user is unaware of. The mistake of underestimating the task
is commonly made by experts, and even more so by novices who
are less familiar with programming/robotics. Active learning (AL)
is when the learning agent interactively asks the teacher specific
questions in order to learn better. This method has been introduced
to HRI [4, 5, 9, 19]. Employing AL, the teaching interface could
help to identify edge cases for the user by allowing for the robot to
raise “Demonstration Queries” (term coined by Cakmak [5]). This
is when the robot finds a situation that its mental model does not
yet cover. For example, should the robot be taught how to handle
an object of a particular colour and of a particular shape? A UI
intervention could include graphics being overlaid in the display to
visualise to the user what these edge cases may look like, such as
showing a wall in front of the robot, or displaying an object out of
the robot’s reach (see Fig. 6a), if it has not been taught what to do
in these cases. The user may then be prompted to teach for these
cases, or the user may indicate that these conditions are outside of
the task space.

In contrast, �̃� \𝐵 represents the user-inferred task space which is
not within the intended task space. For instance, in a hypothetical
fruit handling task, fruits which the user dislikes are first discarded
by the robot. Then, the robot peels the remaining fruits. In this
scenario, the robot does not need to be taught how to peel an orange
if it would have already been discarded. By alerting the teacher
of this, this could avoid wasting time and resources training the
robot, thereby also enhancing the teaching efficiency𝜂. Realistically,
however, the user-inferred task space outside the actual task space
would be much smaller than 𝐵 \ �̃�.

4 ASSESSING THE TEACHER’S
INTERPRETATION OF THE ROBOT
LEARNING STATE

The interpretability of the robot’s learning state is important in
order for the human teacher to teach effectively. There have been
attempts at evaluating the explainability in artificial intelligence (AI)
[49]; however, these are for explaining to a user why a particular
single decision has been made by the agent. Although there have
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Figure 7: The task 𝐵, the robot’s actual learning state 𝑅 and
the teacher’s estimation of the robot’s learning state �̃�.

been several methods introduced to help the human teacher keep
up with the robot’s learning state, to our knowledge there has not
been any literature on how the teacher’s interpretation of the robot
learner’s state can be assessed quantitatively.

Here we draw conclusions from the models described from ear-
lier works [3, 47] to build a model of how interpretation can be
assessed. We show in Fig. 7 the Venn diagram of 𝐵, 𝑅 and �̃� together.
As addressed by the authors in [47], practically, it is difficult to mea-
sure 𝑅 as the space could be unfathomably large. Since the robot
will only be in the environment as defined within 𝐵, space outside
it can be ignored. 𝑅 ∩ �̃� ∩ 𝐵 describes the set of tasks ∈ 𝐵 the robot
is able to perform correctly both in reality and the user’s beliefs
– which can be termed as true positives. 𝐵 \ (𝑅 ∪ �̃�) describes the
set of tasks that the robot is currently unable to perform correctly
both in reality and the user’s beliefs (true negatives). False posi-
tives, or �̃� ∩ 𝐵 \ 𝑅, are the set of tasks whereby the user incorrectly
assumes the robot would be able to perform correctly. This trans-
lates to a lower teaching efficacy 𝜖 , possibly resulting in the robot
making mistakes during the actual task execution, which could
waste resources and impose danger. Lastly, 𝑅 ∩ 𝐵 \ �̃� represents
false negatives – the tasks in which the teacher underestimates the
robot. Although this sounds ideal, it may instead cause the teacher
to provide unnecessary demonstrations, decreasing the teaching
efficiency 𝜂. This could result in greater time and resources spent
than necessary.

Theoretically, the human teacher’s interpretation accuracy could
then be calculated as follows:

𝑖𝑎 =
|𝑅 ∩ �̃� ∩ 𝐵 | + (𝐵 \ (𝑅 ∪ �̃�)) |

|𝐵 | , 𝑖𝑎 ∈ [0, 1] (8)

In practice, it may not be possible to measure the task space 𝐵

depending on how large it is. Hence, more realistically, an approxi-
mated task space �̂� should be used for tasks with large |𝐵 |. This may
be done by sampling of the task space using Monte Carlo methods,
for example. The user then predicts whether the robot can perform
each of the tasks in �̂� correctly. Upon the robot’s sampled task
executions, we can then obtain the numbers of true positives, true
negatives, false positives, and false negatives.

Due to the definitions provided for this model, the assessment
is reduced to simple binary questions: yes or no to whether the
robot has learned sufficiently to perform a specific task correctly. To
more accurately assess the teacher’s interpretation, the assessment
should take place regularly throughout the teaching process. To
account for the uneven class distribution such as when the robot is
unable to perform themajority of the task space, it may be beneficial
to use metrics such as the F1 score rather than accuracy.

Thismethod of evaluating the interpretability is limited towhether
the task can be executed correctly, but not how close it is to being
correct, or if it is optimal. It also does not evaluate the reasoning
in the decision-making of the robot. In this work, we have limited
the assessment to these measures only as they are quantitative and
straightforward.

5 CASE STUDY
In this section, we describe a study we undertook illustrating some
of our aforementioned suggestions. We demonstrate how UI inter-
ventions can improve robot teaching via improving the teacher’s
estimation of the robot’s mental model and learning process. We
also demonstrate how the proposed method of the interpretation
accuracy assessment can take place. Note that here we are not com-
paring MR and non-MR interfaces, but rather the two different UI
intervention approaches.

We developed an MR application for the Microsoft HoloLens
2 head-mounted display (HMD) device using Unity. The virtual
robot used in the application is the Kinova Gen3 robot arm. We
introduced a simple task of teaching the robot to sort objects into
one of the two bins according to shape and colour. Objects which
were light-coloured and contained edges were to be sorted into one
bin, while the others were to be put into the other.

The objects were created virtually on Unity due to the conve-
nience of the creation of different shapes and colours. The shapes
were: cube, sphere and spheroid. The colours were: blue, black and
white. There were therefore nine unique combinations of shape and
colour. There were two of each combination of shape and colour,
resulting in 18 objects altogether.

5.1 Participants and Protocol
We recruited 30 participants (M=16, F=14) with no background in
AI or robotics to demonstrate a sorting task to the robot via the
HoloLens 2 headset. The research was approved by the University’s
Human Research Ethics Team. The participants’ ages ranged be-
tween 18 and 32 (M=22.83, SD=3.69). They were not told that there
were duplicates for each of the unique objects. The robot learned
by using demonstrations to build an ID3 (Iterative Dichotomiser 3)
decision tree. We split the participants into three groups: No Feed-
back, Decision Tree and Demonstration Level. The participants
were briefed on the teaching task, how to operate the device, how
to read the Decision Tree (if applicable), and the definitions of the
Demonstration Levels (if applicable).

The No Feedback (NF) Group: This was the control group.
The participants were not shown any extra information from the
robot (Fig. 8a).

The Decision Tree (DT) Group: The participants were shown
in real-time the robot’s decision tree graph throughout the whole
teaching process (Fig. 8b). This was to illustrate to the human
teacher the current thought process of the learning robot. This
information was anchored onto the user’s HMD screen such that it
stayed in the bottom left corner of the user’s view.

The Demonstration Level (DL) Group: Each of the objects
was labelled to the participant as one of the three options: “Demon-
strated”, “Not Demonstrated” and “Partially Demonstrated” (Fig. 8c).
This was to indicate whether an object with the same shape and
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(a) No Feedback (b) Decision Tree (c) Demonstration Level

Figure 8: Different modalities of robot teaching in the experiment

colour had previously been sorted by the user. These labels were
chosen as it is common in human-human teaching scenarios where
the student can clearly say that they are able to do a certain ques-
tion as they have been shown how to do it before. “Demonstrated”
indicates that an object with the exact same shape and colour has
been demonstrated before. Relating to a human teaching scenario,
this is akin to the student expressing that s/he knows exactly how to
solve the problem since the teacher has shown how to do this exact
same problem before. “Partially demonstrated” means the robot’s
decision tree does not contain the path for that exact combination
of shape and colour of the object, but has a path for one of the
features. This is similar to the student encountering a problem they
have not yet seen but it resembles a similar problem they have seen
before, and the student has an idea of how they may solve it. “Not
demonstrated” means the robot’s decision tree does not currently
contain a single path to sort this object. Demonstration Levels were
used here as we would predict that this could make it easier for the
human teacher to pick which objects s/he should teach to the robot
to sort, compared to not having any UI interventions.

By providing information about the robot’s learning state via the
interface, this may allow for the user to select better demonstrations
for the robot. As the DT condition shows the entire learning tree
for the robot, this may mean that it is the most interpretable. We
therefore posited the following hypotheses:
H1: The control (NF) group will have lower robot performance
than the intervention groups (DT and DL)
H2: The control (NF) group will have lower teaching efficiency
than the intervention groups
H3: The control (NF) group will have lower interpretability than
the intervention groups
H4: The DT group will have the highest robot performance
H5: The DT group will have the highest teaching efficiency
H6: The DT group will have highest interpretability

5.2 Measures
To assess the robot performance, both the F1 score and accuracy
were recorded after nine demonstrations had been completed. Al-
though the F1 score and accuracy values displayed similar trends,
we decided to use the F1 score as it is more appropriate for binary
classification tasks.

For the evaluation of the teaching efficiency, we recorded the
number of teaching demonstrations required for the robot to con-
sistently sort all objects correctly.

The user’s interpretation of the robot learning state was assessed
twice: after five demonstrations, and after ten demonstrations. For
the assessment, the participants were shown the nine unique objects
and asked whether at that point the robot would be able to sort
each one correctly. The selectable answers were “yes” and “no”. The
F1 score was then calculated for each participant.

5.3 Results
To analyse the number of teaching demonstrations required, the
interpretation accuracy, and agent performance for the three groups,
we used the Kruskal-Wallis H-test for the preliminary statistical
test and the Dunn’s Test for the post-hoc test.

5.3.1 Performance. There were significant statistical differences
between the F1 Scores of the three groups (𝐻 (2) = 14.36, 𝑝 < .001).
Post-hoc pairwise comparisons using Dunn’s test indicated that
F1 scores for the NF group (M=0.69 SD=0.29) were significantly
lower than those of the intervention groups (𝑝 < .001 and 𝑝=.013
for DT and DL groups respectively) – see Fig. 9a. No statistically
significant differences were observed between the F1 scores of the
DT (M=0.94 SD=0.07) and DL (M=0.97 SD=0.05) groups (𝑝 = .35).
Overall, our results support H1 but fail to support H4.

5.3.2 Number of Demonstrations Required. There were significant
statistical differences between the numbers of demonstrations re-
quired of the three groups (𝐻 (2) = 17.34, 𝑝 < .001). As can be
observed in Fig. 9b, the numbers of demonstrations required to
complete the teaching for the NF group (M=14.30 SD=2.83) were
significantly greater than those of the intervention groups (𝑝 < .001
and 𝑝 = .0017 for DT and DL groups respectively). Our results there-
fore support H2. The number of demonstrations required for the
DT (M=8.70, SD=1.64) and DL (M=9.00, SD=1.15) groups did not
differ significantly (𝑝 = .63) and hence this fails to support H5.

5.3.3 Interpretability of the Robot. There were significant statis-
tical differences between the robot interpretability of the three
groups (𝐻 (2) = 18.35, 𝑝 < .001). As can be observed in Fig. 9c, the
interpretability scores for the NF group (M=0.77 SD=0.13) were
significantly lower than those of the intervention groups (𝑝 < .001
and 𝑝=.018 for DT and DL groups respectively). The interpretability
scores for the DT (M=0.98, SD=0.02) and DL (M=0.94, SD=0.03)
groups did not differ significantly (𝑝 = .07). Overall, our results
support H3 but fail to support H6.

Overall, it is clear that implementing additional information
regarding the robot can increase interpretability during teaching,
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(a) Robot performance (F1 Score) (b) Number of demonstrations required (c) Robot interpretability (F1 Score)

Figure 9: The robot’s performance, the teaching efficiency and the interpretability measured across the three modes

generate higher agent performance and increase teaching efficiency.
It was as expected that showing labels of whether the object had
been demonstrated prior would improve the teaching efficiency as
it put less of the burden on the teacher to memorise what examples
they had taught to the robot. In practice, several thousands of exam-
ples may need to be given to the robot and hence the teacher should
not always be expected to remember. Overlaying information in
the robot’s environment, seems to be a good way to avoid the need
for the teacher to remember or look up the status of each object in
a list.

Another interesting observation to note was that the partici-
pants did not completely understand how decision trees work. For
instance, before the briefing on decision trees, many did not un-
derstand why a decision tree would not show all attributes. This
shows that in order to make teaching robots accessible to novices,
these graphical representations may in fact still be too complex.
This emphasises the need for a more novice-friendly robot data
visualisation.

6 CONCLUSION
In this work, we presented possible UI interventions that could
be introduced to improve the human-robot teaching process. We
proposed how the teacher’s interpretation of the robot learner can
be assessed quantitatively. We developed a teaching interface with
some of our proposed interventions and showed how using these in-
terventions to display the robot’s decision tree or the demonstration
levels of tasks can improve the interpretability, robot performance
and teaching efficiency.

Although we demonstrated how some UI interventions could
improve interpretability, teaching efficiency and robot performance,
we did not test other methods such as whether showing the robot’s
reach range could improve the teaching process. These proposed
methods will require testing to obtain empirical evidence. Moreover,
for each of the methods introduced for improving the teaching
process, there could be several different approaches. For example,
when showing the robot’s mental model, its uncertainty about a
task could be shown, or the objects within its world model could be
labelled visually to the user. Even then, if we are to show the robot’s
uncertainties, there could be several different ways of doing so. How,
for example, would we be showing uncertainties to the layperson
– through percentages, binary values, or multiple discrete levels?
Would we be using numbers, or perhaps a smiling or frowning face
icon?

The learning model of the robot in our case study was a simple
decision tree. However, with a more complex decision tree, it may
in fact not improve the human-robot teaching due to the lack of
readability. It would also be beneficial to explore how this could
translate to representations of other interpretable models such as
rules [30] or sparse linear models [52]. Based on our descriptions
of UI interventions, more empirical research should be conducted
to build a visual grammar and guidelines for interfaces designed to
assist humans in teaching robots.
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