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Abstract—Robots are prone to making errors, which can
negatively impact their credibility as teammates during collaborative
tasks with human users. Detecting and recovering from these
failures is crucial for maintaining effective level of trust from users.
However, robots may fail without being aware of it. One way to
detect such failures could be by analysing humans’ non-verbal
behaviours and reactions to failures. This study investigates how
human gaze dynamics can signal a robot’s failure and examines
how different types of failures affect people’s perception of robot.
We conducted a user study with 27 participants collaborating with a
robotic mobile manipulator to solve tangram puzzles. The robot was
programmed to experience two types of failures —executional and
decisional— occurring either at the beginning or end of the task,
with or without acknowledgement of the failure. Our findings reveal
that the type and timing of the robot’s failure significantly affect
participants’ gaze behaviour and perception of the robot. Specifically,
executional failures led to more gaze shifts and increased focus on
the robot, while decisional failures resulted in lower entropy in gaze
transitions among areas of interest, particularly when the failure
occurred at the end of the task. These results highlight that gaze
can serve as a reliable indicator of robot failures and their types,
and could also be used to predict the appropriate recovery actions.

Index Terms—Robot Failures, Gaze Dynamics, Human-Robot
Collaboration

I. INTRODUCTION

As robotics advances, the potential for robots to assist people
in various domains, such as manufacturing [1], [2], domestic as-
sistance [3]–[5] is becoming increasingly evident. One significant
application of robotics is in human-robot teaming, which involves
collaboration between humans and robotic systems working
together to perform joint activities [6]. In human-robot teaming,
robots must behave and communicate effectively to maintain
alignment within the team [7]. However, as robots become more
integrated into our daily lives, ensuring the reliability of these
systems is a pressing concern [8], [9]. Robot errors are inevitable,
much like human errors, due to the inherent uncertainty of the
world and the need to make decisions and act in real-time. If these
failures are not managed appropriately, they can negatively impact
task success, human safety, trust, and perceptions of the robot’s
intelligence [10]–[13]. These factors are crucial because the
degree to which people trust robots influences their willingness to
collaborate with them, which is essential for establishing effective
human-robot teams [14]–[16]. However, trust can fluctuate over
time; it tends to increase when robots perform well but might drop
rapidly when they inevitably make errors. In addition, the type of
failure (i.e. at the motion execution or task planning level), might
significantly affect trust, and robots that demonstrate awareness
of their errors show potential in restoring trust, as the saying goes,
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Fig. 1: Different areas of interest in the experiment.

‘a fault confessed is half forgiven.’ By focusing on moments when
human interactions deviate from expected patterns, strategies
can be identified to make these interactions more robust.

One strategy to enhance human-robot interaction is modelling
the user’s reactions to robot failures. This user model can be
inferred from various signals [17], such as the user’s social cues
during the period of the failure [18]. One of those social and
non-verbal cues is a person’s eye gaze [19], which plays a crucial
role in conveying attention [20], [21], intentions [20]–[22],
and emotional states [20], [23]. Eye gaze has been leveraged
in human-robot interactions to enhance the robot’s ability to
comprehend and to anticipate human actions [21], [24]. Research
has also shown that people exhibit consistent gaze patterns while
performing specific activities, [25]–[27], making it possible to
model these patterns. However, there is a lack of studies on
accurate gaze patterns in response to robot failures, which could
potentially aid robots in recovering from their failures.

This study examines the impact of robot failures on users’
perception and gaze behaviour. Utilising a within-between
experimental design, we analysed the effects of failure types,
failure timing, and failure acknowledgement in a sample of 27
participants. Participants engaged in a collaborative task involving
four Tangram puzzles, during which the robot was programmed
to fail. Each participant experienced all combinations of failure
type and timing (within-subjects), with one group exposed to the
robot acknowledging its failures and the other group receiving no
acknowledgement (between-subjects). Our results indicate that
users’ gaze patterns during failure events differ significantly from



those observed during times of no failure. Furthermore, these
gaze behaviours are highly dependent on the type of failure.

II. RELATED WORKS
A. Social Signals to Robot’s Failure

Social signals have been found to be reliable indicators of
errors, as people react to robot errors socially due to their
unexpectedness. Specifically, users display more social signals
during situations with errors than those without [28]. Common
instinctive responses to robot errors include gaze [29]–[31],
facial expressions [31]–[34], verbalization [29], [31], [32], and
body movements [32], [34], [35].

Several studies have demonstrated that participants exhibit
distinct social signals in response to robot failures. For instance,
Aronson et al. [36] observed that participants’ gaze patterns devi-
ate from the norm during unexpected robot actions. Wachowiak et
al. [19] further found that during failures, participants focus more
on the entity they are collaborating with, whereas in error-free sce-
narios, their gaze is more evenly distributed. Similarly, Peacock
et al. [30] noted that gaze initially increases in motion during
failures and then stabilizes as users recognize and correct the
error. Stiber et al. [28] identified that specific facial muscles, such
as those involved in smiling and brow lowering, become more
active during robot errors. Kontogiorgos et al. [29], [31] found
that robot failures lead to increases in spoken words, utterance
duration, and gaze shifts towards the robot, indicating heightened
engagement during errors. While there is substantial research on
human reactions to interacting with a failing robot, there is limited
understanding of how this interaction affects the perception of the
robot as a teammate in highly collaborative tasks and its impact
on human gaze behaviour. This gap is significant, as existing
research indicates that individuals exhibit distinct social reactions
depending on the type of robot failure encountered [31], [32].

B. Types of Failure
Robot failures can be classified into different types depending

on the nature of the issue. Mirnig et al. [32] identified two main
types: technical failures, where the robot fails to perform its task
correctly, and social norm violations, which occur when the robot
deviates from expected social behaviour. Honig and Oron-Gilad
[8] offered a taxonomy distinguishing between (a) technical
failures, involving hardware malfunctions and software issues,
and (b) interaction failures, arising from uncertainties during
interactions with the environment, other agents, or humans.
Similarly, Tian et al. [37] categorised errors into performance
errors, which affect perceived intelligence and task competence,
and social errors, which impact socio-affective competence.
Kontogiorgos et al. [29] further classified conversational failures
into task-oriented failures, such as incorrect guidance or
incomplete instructions, and social protocol violations, like
disengagement. Additionally, Morales et al. [38] categorised
robot failures into Personal Risk Failures (e.g., throwing objects
or erratic movements), Property Risk Failures (e.g., dropping or
crushing objects), and an Assistance scenario where the robot
seeks participant help without posing direct risks.

C. Timing of Failure
Research has shown that the timing of failures during a

task influences people’s perceptions of the robot in various

ways. Desai et al. [39] found that early failures significantly
reduce trust and make it harder to recover compared to failures
occurring later in the interaction. Similarly, Rossi et al. [40]
observed that participants’ trust in the robot did not increase
when severe mistakes happened early in the interaction. In
contrast, Morales et al. [38] discovered that the order of failures
significantly impacts participants’ perceptions, with severe
failures occurring last leaving a stronger impression and making
participants more likely to believe the robot will fail again in
future tasks. Lucas et al. [41] also found that early errors can
be somewhat recovered from, especially with positive social
interaction, but late errors are more damaging. On the other
hand, Kontogiorgos et al. [31] demonstrated that reactions to
failures remain consistent, regardless of whether they occur early
or late in the interaction. Existing research shows contrasting
results regarding the effects of robot failure timing on trust,
highlighting the need for further study to understand how failure
timing affects user perception of the robot. Furthermore, to the
best of the author’s knowledge, no research has explored the
impacts of failure timing on human gaze behaviour.

D. Failure Repair
Previous studies have investigated how different trust repair

strategies used by robots influence users’ perceptions. For exam-
ple, LeMasurier et al. [42] considered three strategies for explain-
ing failures: 1) The robot only acknowledges its failure, 2) The
robot explains what went wrong and why after the failure, and
3) The robot predicts and explains potential failures before they
occur. Their results highlight that both explaining and predicting
failures enhance users’ perceptions of a robot’s intelligence and
trustworthiness compared to providing no explanation at all. In
[43], four trust repair approaches (promises, denials, explanations,
apologies) were compared during a collaborative robot task.
Apologies, explanations, and promises were similarly effective
and outperformed denials for the ability measure, while apologies
and promises were most effective for benevolence. Additionally,
Wachowiak et al. [44] found that participants preferred apologies
most and silence least when a robot made an error. While previous
studies have shown that apologies and explanations for failures
help people regain trust in the robot, we wonder if this could also
affect their social behaviour, specifically their gaze behaviour.

E. Gaze in HRC
The gaze behaviour in human-robot collaboration has been

studied widely, focusing on both the robot’s gaze behaviour while
collaborating with a human and the human’s gaze behaviour
while interacting with a robot [45], [46]. Most studies in human-
robot collaboration emphasise the human’s gaze behaviour, as
it can indicate human intent and focus, allowing the robot to
determine its next move and adapt its behaviour accordingly.

The literature collectively highlights the significant role of
gaze in intent recognition. Huang et al. [16] focused on enabling
robots to proactively perform task actions by predicting the task
intent of their human partners based on observed gaze patterns.
Their anticipatory control method significantly improved task
efficiency, allowing the robot to respond faster compared to
the reactive method. Additionally, Shi et al. [47] also developed
an effective model for accurately determining which object a
person intends to focus on during interactions with a robot. The



literature demonstrates that gaze can be a reliable indicator of a
person’s intent and by extension their anticipation of upcoming
actions. This leads us to wonder whether gaze also has the
potential to help the robot repair from its failure.

Despite extensive research on human reactions to robot
failures, little is known about how such failures influence
perceptions of the robot as a teammate or affect human gaze
behavior. Moreover, the impact of failure timing and the robot’s
acknowledgment on user gaze remains unclear. To explore these
gaps, we address the following research questions:

• RQ1 How does human gaze behaviour change in response
to different robot failures during a collaborative task?

• RQ2 How do different robotic failures affect human
perception of the robot as a teammate?

III. METHODOLOGY

A. Tasks Description
The experiment consists of four distinct tasks, in which one

participant and a robot collaboratively solve Tangram puzzles.
In each task, participants were required to create a unique
shape using Tangram pieces. The sequence of shapes to solve
is Rocket, Rabbit, Turtle, and Cat. We chose puzzles of similar
difficulty to ensure the difficulty would not affect participants’
perception and behaviour towards the robot.

Each Tangram puzzle consisted of seven pieces. The robot
handled four pieces (two small triangles, a square, and a
parallelogram), while the participant had to place correctly three
pieces (a medium-sized triangle and two large triangles). The
Tangram pieces were 3D printed, and when assembled, formed a
square of 200mm in side. Each piece was 20mm high. Besides,
an cube (32mm×32mm×40mm) was attached on top of each
piece to act as a handle and to facilitate the robot’s ability to
pick up the pieces. The puzzles’ silhouettes were printed in
black on A2 white paper, slightly larger than the Tangram pieces
to avoid the need for very precise placement, with approximately
1 cm clearance on each side. These papers were fixed to the
table, and the participant and the robot had to place each of
their pieces in the correct position. The participant was asked
to move a piece only after the robot had completed its action.

The robot always placed the first piece. To reduce confusion
about when the participant should place their piece, the robot
said: “Now it is your turn.”, after placing each piece, except
for the last one, when it said: “Now, let’s solve the next
puzzle.” If the participant placed a piece incorrectly, the robot
responded,“You have placed the object in the wrong location.”

The robot’s pieces were placed next to the paper and near the
robot, as shown in Figure 1. In each puzzle, the arrangement
of the pieces varied from the previous one, and the robot
first determined the placement and orientation of each piece
before picking it up. To facilitate this process, an ArUco marker
was attached to the top of each piece, allowing the robot to
accurately locate them. The Tiago robot, programmed using
ROS1, then utilised the tf library to transform the pose of the
desired object to the coordinate frame associated with its arm,
and subsequently employed inverse kinematics to move its
arm to the correct location. The robot’s head movements were
pre-programmed to approximately mimic human gaze behaviour.
During its turn, the robot maintained its gaze on the Tangram

piece while picking it up and placing it. Once the robot finished
placing a piece, it started looking at the participant.

B. Robot Failures
We designed the robot to fail during each task in its interaction

with the participants. These failures varied based on their type,
timing, and whether the robot acknowledged its failure or not.

1) Types of Failures: The types of failures in our experiment
represent typical robot malfunctions that may occur during
interactions and are commonly reported in HRI. In this research,
the robot will simulate two distinct types of failures: 1)
Executional failure (EF) and 2) Decisional failure (DF).

EF can be categorised as a technical failure, specifically timing
and ordering [8]. In this scenario, the robot pauses for 15 seconds
just before picking up an object, while keeping the object within
its end effector. After the 15-second pause, the robot will resume
and complete the task of picking up and placing the object.
This type of failure aligns with previous research [19], [29].

DF can also categorized as a technical failure, where the robot
performs the correct action incorrectly [8]. In this scenario, after
picking up an object, the robot will mistakenly move to the
location designated for a different object, place it and pause for
5 seconds. While still holding the object, the robot will then lift
the object again and place it in the correct location. This type of
failure aligns with previous research, in which the robot attempts
to perform the correct action but executes it incorrectly [28], [48].

The procedure for picking up and placing objects during
failure events is identical to the procedure when no failure
occurs, indicating that the robot shows no signs of committing
a failure beforehand. The only distinction in the EF is a pause,
which increases the total time for the pick-and-place task by
15 seconds. In the DF, the robot moves its arm to the wrong
location, goes down, and comes back up, resulting in an overall
increase of 16.5 seconds to the motion.

2) Timing of Failures: The literature suggests that the
timing of a failure—whether it occurs at the beginning or
the end of an interaction—can affect a person’s perception
of the robot differently. In this research, we aim to investigate
how the timing of a failure impacts both gaze behaviour and
user perceptions. Specifically, the robot may fail either at the
beginning of the collaboration when placing its first piece, or
towards the end of the interaction when placing its third piece.

3) Acknowledgement of Failures: A fault confessed is
half redressed. Guided by this principle, we explored how
the robot’s ability to acknowledge its mistakes influences
participants’ perception and gaze patterns in subsequent failures.
We designed two distinct scenarios. In one scenario, the robot
demonstrates awareness of its mistakes by acknowledging each
failure immediately after they occur. After a DF failure, it says,
“Sorry, I made a mistake.” and after an EF, it says, “Sorry for the
delay.” In the other scenario, the robot does not declare any of its
failures. In both scenarios, the robot performs physical repairs.

C. Participants
We conducted a priori power analysis to calculate the sample

size for our experiment using G*Power [49]. The calculation
was based on a medium effect size of f=0.25, an alpha level
of 0.05, and a power of 0.8. As a result, we determined a
minimum of 24 participants was required; however, we recruited
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Fig. 2: Experimental diagram showing the process where participants first complete a pre-task questionnaire, followed by collaboratively solving a Tangram
puzzle four times.

27 participants (16 females, 10 males, and 1 non-binary) via our
university recruitment website. Participants primarily consisted
of students and university staff, none of whom had previous
experience working with robots. They were compensated with a
gift voucher for their participation. The average age was ranging
between 18y.o. and 34y.o. (M = 23.26, SD = 4.3). Due to some
technical issue, one participant’s gaze data was not recorded,
and another participant did not complete some questions in one
of the after-task questionnaires. Participants signed a consent
form before participation and were made aware that their gaze
data was recorded during the experiment. At the end of the
experiment, participants were informed that the study aimed
to observe their responses to the robot’s failures.

D. Experiment
Participants were first briefed by an experimenter on how

to interact with the robot and the goals of the tasks. They
then completed a demographics questionnaire, providing their
age and gender. Following this, participants were seated at a
table opposite the robot and asked to wear eye-tracking glasses
during the experiment. As per the experimental conditions
(Table I), during each puzzle, the robot correctly picked and
placed three pieces but intentionally made an error with one
piece. After each puzzle, participants completed a questionnaire
assessing their perception of the robot’s performance during
that specific puzzle. Participants were unaware that these errors
were pre-programmed. This cycle was repeated for all four
puzzles. The experimental procedure is illustrated in Figure 2.

The experimenter initiated the robot’s turns and intervened
when participants made mistakes by triggering the robot’s verbal
response. This ensured that the robot began its turn immediately
after the participant’s turn, maintaining a consistent time gap
across all participants. The experimenter was seated on the
opposite side of the table, near the robot, to ensure safety and
to press the emergency button in case of an actual malfunction.
For consistency, the same experimenter conducted all sessions
and operated the robot throughout the study.

The experiment was conducted in a laboratory on the
University of Melbourne campus. The duration of solving each
puzzle together with the robot was about 191.12s ± 35.40s.

After each puzzle, the experimenter asked the participant to
complete a survey and prepared the table for the next puzzle.
The gap between each puzzle was about 93.88s ± 38.81s.

A mixed experimental design was used, with failure types
(executional and decisional) and failure timings (early and late)
as within-subjects factors, and failure acknowledgement as a
between-subjects factor. To minimise order effects, the within-
subjects factors were counterbalanced using a four-condition
balanced Latin Square. Each factor was systematically integrated
into the puzzles. The first thirteen participants experienced the
failure acknowledgement, while the second fourteen did not.

Participant ID Puzzle 1 Puzzle 2 Puzzle 3 Puzzle 4 Acknowledgment
1 EF (Early) EF (Late) DF (Late) DF (Early) Yes
2 EF (Late) DF (Early) EF (Early) DF (Late) Yes
3 DF (Early) DF (Late) EF (Late) EF (Early) Yes
4 DF (Late) EF (Early) DF (Early) EF (Late) Yes
5 EF (Early) EF (Late) DF (Late) DF (Early) Yes
... ... ... ... ... ...
14 EF (Early) EF (Late) DF (Late) DF (Early) No
... ... ... ... ... ...

TABLE I: Order of failure type and timing across puzzles with acknowledgement
of failure

E. Measures
1) Objective Gaze Measures: For each puzzle and each piece,

we recorded the robot’s current action— such as moving above
the target object, and lowering to pick up the object—along
with whether a failure occurred and the type of failure, all
based on Unix time. We recorded users’ gaze data during the
whole experiment.

Gaze data was collected during the tasks as participants
collaborated with the Tiago robot to solve the puzzles. In our
experiment, the gaze data during the robot’s turn was particularly
important, from the moment it started moving until it completed
its turn. Data was captured using Neon Eye Tracking Glasses
from Pupil Labs. The gaze data included the participant’s field
of view image frame along with the x and y coordinates of their
gaze within that frame. This data was recorded in real-time
on a computer. The gaze data was captured at a rate of 30 Hz
for both the image frames and gaze coordinates.

To facilitate the identification of participants’ areas of interest
(AoIs), we attached ArUco markers near the areas of interest.



The AoIs in our experiment included the robot body (comprising
the robot’s face and torso), the Tangram figure, the end effector,
the robot’s pieces, the participant’s pieces, and the experimenter.
These areas of interest are illustrated in Figure 1.

We calculated several gaze-related measures to analyse user
behaviour during the interaction. These metrics included: (1)
the number of gaze shifts toward the robot body, (2) the number
of gaze shifts across all AoIs, (3) the proportional distribution
of gaze directed toward the robot body, the Tangram figure,
and the robot’s end effector, and (4) transition and stationary
entropy derived from gaze transition matrices [50], [51]. Each
of these measures captures different aspects of gaze behaviour.
The number of gaze shifts reflects the frequency of visual
transitions between specific areas, providing insight into user
engagement and focus dynamics. The proportional distribution
of gaze indicates how much time users spent looking at each
AoI, offering a measure of relative visual attention. Transition
entropy quantifies the unpredictability of gaze transitions
between AoIs, while stationary entropy measures the overall
distribution of gaze within the AoIs, highlighting how scattered
or concentrated the gaze behaviour was during the task.

The gaze measures were calculated during a specific time
window for both failure and non-failure conditions: from the
moment the robot began moving to pick up an object until it
placed the object and returned to its initial position. Since failure
timing is not applicable in non-failure conditions, the analysis of
these measures was conducted in two ways. First, we analysed
the data by failure type (no failure, executional failure, decisional
failure) and acknowledgement (yes vs. no). Second, we analysed
it by failure type (executional failure, decisional failure), timing
(early vs. late), and acknowledgement (yes vs. no).

2) Subjective Measures: After each puzzle, participants rated
their perceptions of the robot’s behaviour in terms of perceived
intelligence, perceived safety, and performance trust. Perceived
intelligence and safety were measured using items from the
Godspeed questionnaire [52], while performance trust was
assessed using items from the Multi-Dimensional Measure of
Trust (MDMT) questionnaire [53].

To evaluate the level of intelligence participants attributed to
the robot, we used three items from the Godspeed questionnaire:
“Incompetent/Competent,” “Irresponsible/Responsible,” and
“Foolish/Sensible.” For perceived safety, we included one item
from the Godspeed questionnaire: “Anxious/Relaxed.” To assess
performance trust across various robot failures, we utilised
the “performance trust” dimension from the MDMT. This
included two items from the Reliable subscale (“Reliable” and
“Predictable”) and two items from the Competent subscale
(“Skilled” and “Capable”).

The analysis of these measures was conducted based on
failure type (executional failure, decisional failure), timing
(early vs. late), and acknowledgement (yes vs. no).

IV. RESULTS

A. Behavioural Response

In this section, we address the first research question by
analysing participants’ gaze behaviour using the measures
outlined in section III-E1. Our analysis focuses on how
these metrics vary during failure situations. Additionally, we
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Fig. 3: The average number of gaze shifts across all AoIs (left) and toward
the robot body (right) across three different failure situations, with or without
the robot acknowledging its failure. Error bars represent the standard error
of the mean. Significance levels, based on adjusted p-values, are denoted as
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Fig. 4: The average number of gaze shifts across all AoIs and the average number
of gaze shifts toward the robot body, comparing failure type, failure timing, and
the robot’s acknowledgement of its failure. Error bars represent the standard
error of the mean. Significance levels are denoted as follows: *** for p<.001.

investigate the anticipatory capability of participants’ gaze about
the placement of objects.

1) Gaze Shift: We conducted a two-way ANOVA to compare
gaze patterns during failure versus non-failure robot actions, with
having failure type as a within-subjects and the acknowledgement
as a between-subjects. For the number of gaze shifts across
all AoIs, the results indicated a significant main effect for
the factor of failure type (F (2,48) = 15.16; p < .001; η2 =
0.39). Bonferroni-corrected pairwise t-tests revealed significant
differences between each type of failure and no failure (NF). For
the number of gaze shifts toward the robot’s body (i.e., the robot’s
face and torso), the results again showed significant main effects
for the factor of failure type (F (2,48)=21.48; p<.001; η2=
0.47). Bonferroni-corrected pairwise t-tests indicated significant
differences between EF and DF, as well as between EF and NF.
Figure 3 illustrates the average values for each condition.

Subsequently, a three-way ANOVA was conducted to analyse
gaze patterns during failure durations, focusing on the effects
of failure type and timing as within-subjects factors, and
acknowledgement as a between-subjects factor. For the number
of gaze shifts across all AoIs, the results showed no significant
effects for any of the factors. However, for the number of gaze
shifts toward the robot’s body, the results revealed a significant
effect of failure type (F (1,24)=17.780; p<.001; η2=0.43).
Figure 4 shows the average values for each condition.



2) Gaze Distribution: In this section, we compare the
proportion of gaze directed toward three AoIs: the robot’s end
effector, the Tangram figure, and the robot’s body, during each
task while the robot is performing its actions.

First, we compare the proportion of gaze directed during
failure events to that during non-failure events. The results of
the two-way ANOVA revealed significant differences in failure
type but no differences in acknowledgement across all measures.
Specifically, significant differences were observed for the end
effector (F (2,48) = 6.13; p= .009; η2 = 0.20), the Tangram
figure (F (2,48)=17.71; p<.001; η2=0.42), and the robot’s
body (F (2,48) = 14.35; p < .001; η2 = 0.37). Bonferroni-
corrected pairwise tests indicated significant differences between
EF and NF, as well as between EF and DF for all measures.
Figure 5 shows the average values for each measure.

We subsequently conducted a three-way ANOVA with failure
type and timing as within-subjects factors, and acknowledgement
as a between-subjects factor. The results, as presented in Table
II, demonstrated significant differences in failure type and
timing across the end effector, Tangram figure, and Robot
body. Notably, for the Robot body, we also observed significant
interactions between acknowledgement and timing. Our analysis
showed that participants looked at the Tangram figure more
when the failure occurred early in the interaction compared to
late failures, while they focused more on the robot’s body and
end effector during late failures than early ones.

3) Gaze Transition Matrix: Based on the AoIs, we created
transition matrices, focusing exclusively on transitions between
different AoIs while excluding self-repeating transitions. We
then compared the transition matrices using transition entropy
and stationary entropy.

We conducted a two-way ANOVA to compare transition
matrices during failure versus non-failure robot actions. The
results showed significant differences in failure type for both
entropies. Specifically, significant differences were observed for
transition entropy (F (2,48)=13.90; p<.001; η2=0.37), and
stationary entropy (F (2,48)=11.01; p<.001; η2=0.31). No
significant differences were found for acknowledgement. Further,
Bonferroni-corrected pairwise t-tests indicated significant
differences in transition entropy between EF and NF, and between
NF and DF. For stationary entropy, significant differences were
observed between EF and DF, and between NF and DF. The
mean values for transition entropy indicate that NF has the
highest value, while DF has the lowest. In contrast, for stationary
entropy, EF has the highest value, and DF the lowest. In all
conditions where the robot acknowledges its failure, both entropy
values are lower. The transition matrices are shown in Figure 6.

Subsequently, we performed the Wilcoxon Signed-Rank
Test for failure type and timing, and the Wilcoxon Rank-Sum
Test for acknowledgement. The results (Table III) indicate
significant differences in failure type for both entropies.
Additionally, significant differences in timing were observed
for stationary entropy. No significant differences were found
for acknowledgement. The median values show that when the
failure type is DF, the timing is late, or the robot acknowledges
its failure, both entropy values are lower.

4) Goal Anticipation by Gaze Analysis: In this section, we
examine the proportion of time participants spent looking at the
correct goal location for object placement within the Tangram
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figure, compared to the total time spent looking inside the
Tangram figure. The purpose of this analysis is to determine
whether participants exhibited anticipatory gaze behaviour to
assist the robot in recovering from its failures. Specifically, we
assessed the average percentage of time participants looked at
the goal, as well as the average number of gaze shifts towards
the goal during each puzzle and failure period. The duration
considered for each puzzle spanned from the moment the robot’s
end effector was positioned above the object it intended to pick up
until it was positioned above the designated placement location
for that object. During failure periods, we focused on the time
from when the robot initiated a failure until it began its repair.

The results indicate that as participants progressed through
the puzzles, the proportion of time spent looking at the goal
decreased. Specifically, in Puzzle 1, participants looked at the
goal for 47% (±14%) of the time, followed by 44% (±13%)
in Puzzle 2, 38% (±16%) in Puzzle 3, and 22% (±9%) in
Puzzle 4. Additionally, the total number of gaze shifts towards
the goal also almost decreased as participants advanced through
the puzzles. The average number of gaze shifts per piece was
10.33 (±5.35) in Puzzle 1, 10.65 (±4.57) in Puzzle 2, 7.66
(±4.79) in Puzzle 3, and 5.47 (±3.18) in Puzzle 4.

When analysing the failure periods, the results show that
participants spent 35% (±26%) of their task-related gaze time
looking at the goal during EF. This percentage was higher, at
41% (±15%), during DF. Additionally, participants exhibited
an average of 3.42 (±3.36) gaze shifts for each EF, compared
to a substantially higher average of 14.84 (±7.11) gaze shifts
for each DF.

B. Subjective Measures
In this section, we address the second research question by

analysing participants’ subjective behaviour using the measures
outlined in section III-E2. To achieve this, we conducted a
three-way ANOVA for each subjective scale to examine the
effects of failure type, timing, and acknowledgement. For the
Competent scale, significant interaction effects were found
for type*timing (F (1,24)= 6.79, p = .016, η2 = 0.22). The
Sensible scale showed a significant main effect of timing
(F (1,24)=5.79, p= .024, η2=0.19). In the Anxious/Relaxed
(Self) scale, significant main effects were observed for timing



Scale Measure Type Timing Acknowledgement [Type*Timing] [Type*Acknowledgement] [Timing*Acknowledgement] [Type*Timing*Acknowledgement]
End Effector df (1,24) (1,24) (1,24) (1,24) (1,24) (1,24) (1,24)

F value 7.79 4.49 0.31 <0.001 3.85 0.55 0.75
p value .010 .447 .586 .980 .061 .465 .396
η2 0.24 0.16 0.01 <0.0001 0.14 0.02 0.03

Tangram figure df (1,24) (1,24) (1,24) (1,24) (1,24) (1,24) (1,24)
F value 25.86 4.85 2.02 0.03 4.09 0.80 2.09
p value <.001 .038 .168 .868 .054 .379 .161
η2 0.52 0.17 0.08 <0.01 0.15 0.03 0.08

Robot Body df (1,24) (1,24) (1,24) (1,24) (1,24) (1,24) (1,24)
F value 23.01 5.29 1.20 2.80 0.46 5.71 1.34
p value <.001 .030 .284 .108 .502 .025 .258
η2 0.49 0.18 0.05 0.10 0.02 0.19 0.05

TABLE II: Results of the three-way mixed ANOVA for gaze distribution

EE T RB Exp. PR PP

EE
T

R
B

Ex
p.

PR
PP

0 0.54 0.12 0.005 0.32 0.005

0.49 0 0.052 0.004 0.3 0.16

0.52 0.27 0 0.056 0.15 0.008

0.14 0.16 0.39 0 0 0

0.48 0.49 0.01 0.001 0 0.02

0.091 0.83 0.006 0 0.072 0

No Failure
EE T RB Exp. PR PP

EE
T

R
B

Ex
p.

PR
PP

0 0.39 0.27 0.005 0.33 0.007

0.39 0 0.11 0.001 0.32 0.18

0.63 0.16 0 0.055 0.048 0.027

0.06 0.011 0.47 0 0 0

0.51 0.37 0.015 0.002 0 0.027

0.026 0.81 0.003 0 0.082 0

Executional Failure
EE T RB Exp. PR PP

EE
T

R
B

Ex
p.

PR
PP

0 0.62 0.096 0.013 0.27 0.002

0.58 0 0.013 0.005 0.28 0.12

0.54 0.22 0 0 0.077 0.009

0.14 0.13 0.026 0 0.015 0

0.5 0.49 0.002 0 0 0.007

0.011 0.89 0 0 0.026 0

Decisional Failure
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0.5 0 0.07 0.006 0.26 0.16

0.55 0.29 0 0.04 0.11 0.005

0.31 0.46 0.2 0 0.038 0

0.55 0.41 0.024 0.001 0 0.024

0.034 0.89 0.023 0.003 0.048 0
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0 0.33 0.23 0 0.43 0.005

0.37 0 0.086 0.004 0.39 0.15

0.72 0.12 0 0.038 0.11 0.007

0.032 0 0.1 0 0.019 0

0.59 0.38 0.024 0 0 0.007

0.015 0.83 0 0 0.004 0
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0 0.6 0.14 0.009 0.25 0.005
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0.57 0.24 0 0.025 0.15 0.019

0.15 0.12 0.17 0 0 0.013

0.55 0.42 0.024 0 0 0.012

0.019 0.69 0.011 0.003 0.043 0 0.0
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Fig. 6: The transition matrices for three different interaction scenarios—NF, EF, and DF—are presented, both for cases where the robot acknowledges its failure and
where it does not. The vertical axis represents the current states, while the horizontal axis represents the next states. ’EE’ stands for End Effector, ’T’ for Tangram
figure, ’RB’ for Robot Body, ’Exp.’ for Experimenter, ’PR’ for Pieces (Robot), and ’PP’ for Pieces (Participant). The transition matrices are displayed as heat maps.

Scale Measure Type Timing Acknowledgement
Transition Entropy N 52 52 52

W 1007 864 1583
p-value .004 .112 .134

Stationary Entropy N 52 52 52
W 1197 1035 1522

p-value <.001 .002 .270

TABLE III: Results of the Wilcoxon tests for the entropy of the transition matrices,
where N represents the sample size for each condition and W is the test statistic.

(F (1,24)= 7.80, p = .010, η2 = 0.24) and acknowledgement
(F (1,24)= 5.50, p = .027, η2 = 0.18). The Predictable scale
had a significant interaction effect for type*acknowledgement
(F (1,25)=5.38, p= .029, η2=0.18). The Skilled scale showed
a significant main effect of type (F (1,25)= 4.98, p = .035,
η2 = 0.17). Finally, the Capable scale revealed a significant
three-way interaction of type*timing*acknowledgement
(F (1,25)=6.99, p= .014, η2=0.22). The results showed that
participants rated the robot higher on measures of perceived

intelligence and trust in the questionnaire when the failure was
executional, occurred early, or when the robot acknowledged
its failure. However, for feelings of safety, ratings were higher
when the failure occurred late and the robot did not acknowledge
it. More information can be found in the Appendix.

V. DISCUSSION

This study compared behavioural responses to robot failures,
focusing on how individuals reacted and perceived the robot.
Failures varied by type, timing, and acknowledgement. The find-
ings revealed that robot failures affect user gaze and perceptions.
These findings are discussed further in the following section.

A. Behavioural Response

To address the first research question, we analysed user gaze
behaviour in multiple ways: the number of gaze shifts, gaze
distribution during puzzle-solving, and gaze entropy based on



transition matrices. These measures allowed us to examine how
the type and timing of failures, as well as whether the robot
acknowledged its failure, influenced user gaze patterns and
whether gaze behaviour varied across different failure scenarios.
Our results showed that user gaze is a reliable indicator of robot
failures. When the robot made a failure, participants exhibited
more frequent gaze shifts between different AoIs, likely due
to confusion and an attempt to understand what was happening.
This finding is similar to the results of Kontogiorgos et al. [29],
who found that people tend to gaze more at the robot when
it makes a mistake. The literature suggests that different types
of failures influence user perceptions of the robot [38], and our
findings support this by showing that users exhibit distinct gaze
behaviours in response to various failure types. For example,
when the failure was executional, the number of gaze shifts
towards the robot was significantly higher compared to when the
failure was decisional. Moreover, during executional failures, the
proportion of time spent looking at the robot was much higher
compared to decisional failures. It is crucial for the robot to
recognize the type of failure it has made so that it can determine
the appropriate strategy for recovery and regain the user’s trust.

The timing of the failure is also crucial for the robot, as it
requires different approaches for recovery and repair. In our
research, while the timing of the failure—whether at the start or
end of the interaction—did not significantly affect gaze shifts, it
did influence gaze transition matrices, and gaze distribution across
AoIs. Failures at the beginning of the interaction led to higher
median gaze transition values, indicating more randomness early
on. Additionally, participants’ focus on the Tangram figure was
more when the failure occurred at the beginning of the interaction
compared to later ones, while their focus on the robot’s body
or end effector was more during late failures than early ones.

In our research, after committing a failure, the robot could
either acknowledge the failure and then continue its action,
or proceed without acknowledgement. We could not find
significant differences in users’ gaze behaviour when the robot
acknowledged its failure and when it did not. As the literature
suggests [43], [44], [54], there are other verbal approaches to
failure recovery, such as promises and technical explanations,
which might influence users’ gaze differently. Verbal failure
recovery is important for robots, as it demonstrates an awareness
of mistakes. This, in turn, can make the robot appear more
intelligent and encourage users to engage with it more.

Our study also explored changes in users’ anticipatory gaze
behaviour during the task and its potential role in assisting the
robot to recover from failures. Participants frequently anticipated
the placement of the object before the robot executed the
action, even when the robot made an error. This anticipatory
gaze behaviour could serve as a valuable cue for the robot to
detect its failures and initiate appropriate recovery strategies.
However, we observed a decrease in participants’ anticipatory
gaze behaviour as the number of tasks increased. This decline
may indicate reduced engagement over time, with participants
being more actively collaborative at the beginning of the
interaction. It also suggests that users’ gaze behaviour might
change throughout the interaction. These findings highlight the
dynamic nature of gaze behaviour throughout the interaction.

B. Subjective Measures

To address the second research question, we examined user
perceptions of the robot in three areas: perceived intelligence,
sense of safety, and trust during failures. The analysis revealed
how these measures varied with the type and timing of failure
and whether the robot acknowledged its mistake.

The results of the subjective evaluation revealed that users’
perceptions of the robot’s intelligence and safety were not signifi-
cantly influenced by the type of failure. However, users exhibited
higher levels of trust in the robot during executional failures com-
pared to decisional failures, suggesting that placing an object in
an incorrect location reduces trust more than making an incorrect
decision. Additionally, we observed interesting findings regarding
the timing of the robot’s failures. When failures occurred early
in the interaction, users rated the robot as more intelligent and
trustworthy compared to failures that occurred later. For the
measure of ”Sensible,” this difference was statistically significant.
These findings are consistent with previous research by Morales et
al. [38] and Lucas et al. [41]. Interestingly, users reported feeling
more relaxed when failures occurred later in the interaction,
aligning with results from Desai et al. [39] and Rossi et al. [40].

When the robot acknowledged its failures, users perceived it
as slightly more intelligent and trustworthy but also experienced
increased anxiety. This finding may be explained by the robot’s
consistent physical repair actions a few seconds after each
failure. When the robot did not explicitly acknowledge its
failures, users might not have interpreted these actions as errors,
reducing their perception of failure events.

C. Limitations and Future Work

There were instances where participants were preoccupied with
determining the placement of their next piece, which occasionally
led them to overlook the robot’s movements. However, these
occurrences were minimal. Another limitation is the restriction to
only two types of failure and whether the robot acknowledges its
failure or not. The effect size in our study was medium; however,
to obtain more robust results, a larger sample size would be bene-
ficial. Furthermore, for safety reasons, the robot’s arm movement
was slowed and the experimenter was in the room, which may
have influenced participants’ perceptions. Future research could
address these limitations by exploring a broader range of failure
types and incorporating explanatory feedback from the robot.

VI. CONCLUSION

This study examines how robotic failures affect human gaze
dynamics and perceptions during collaborative tasks, offering
insights into using gaze as a failure indicator to assist in repair.
The findings reveal that executional failures lead to more
gaze shifts toward the robot, indicating user confusion, while
decisional failures result in lower entropy in gaze transitions
among areas of interest. Failures at the beginning of the
interaction lead to more randomness in gaze shifts across AoIs.
The timing of the failure during the task also affects users’ gaze
distribution across AoIs. Finally, acknowledgement of failure
does not seem to affect gaze behaviour or users’ perception.
Our work contributes to a better understanding of how gaze
behaviour can be leveraged in HRC to design more effective
and reliable human-robot interaction systems.
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to predict task intent in collaboration,” Frontiers in Psychology, vol. 6,
July 2015. Publisher: Frontiers.

[24] E. Mwangi, E. I. Barakova, M. Dı́az, A. C. Mallofré, and M. Rauterberg,
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APPENDIX

Results of the three-way mixed ANOVA for subjective measures

Scale Measure Type Timing Acknowledgement [Type*Timing] [Type*Acknowledgement] [Timing*Acknowledgement] [Type*Timing*Acknowledgement]
Competent df (1,24) (1,24) (1,24) (1,24) (1,24) (1,24) (1,24)

F value 1.51 0.03 0.70 6.79 2.49 0.03 2.75
p value .231 .855 .413 .016 .127 .855 .110
η2 0.06 <0.01 0.03 0.22 0.09 <0.01 0.10

Sensible df (1,24) (1,24) (1,24) (1,24) (1,24) (1,24) (1,24)
F value 2.63 5.79 0.53 0.44 2.62 1.79 2.41
p value .118 .024 .475 .512 .118 .194 .134
η2 0.10 0.19 0.02 0.02 0.10 0.07 0.09

Responsible df (1,24) (1,24) (1,24) (1,24) (1,24) (1,24) (1,24)
F value 0.58 0.04 1.74 0.03 0.21 0.34 0.29
p value .453 .848 .200 .859 .651 .567 .595
η2 0.02 <0.01 0.07 <0.01 <0.01 0.01 0.01

Anxious/Relaxed df (1,24) (1,24) (1,24) (1,24) (1,24) (1,24) (1,24)
(Self) F value 0.07 7.80 2.23 0.26 5.50 0.84 0.01

p value .792 .010 .148 .613 .027 .369 .905
η2 <0.01 0.24 0.08 0.01 0.18 0.03 <0.001

Reliable df (1,25) (1,25) (1,25) (1,25) (1,25) (1,25) (1,25)
F value 1.61 0.83 1.28 1.50 1.00 0.35 0.99
p value .216 .370 .268 .233 .328 .561 .330
η2 0.06 0.03 0.05 0.06 0.04 0.01 0.04

Predictable df (1,25) (1,25) (1,25) (1,25) (1,25) (1,25) (1,25)
F value 2.98 1.43 0.94 3.97 5.38 0.26 3.97
p value .097 .243 .340 .057 .029 .616 .057
η2 0.11 0.05 0.04 0.14 0.18 0.01 0.14

Skilled df (1,25) (1,25) (1,25) (1,25) (1,25) (1,25) (1,25)
F value 4.98 2.93 0.43 0.13 1.65 0.11 3.46
p value .035 .099 .516 .719 .210 .741 .075
η2 0.17 0.11 0.02 <0.01 0.06 <0.01 0.12

Capable df (1,25) (1,25) (1,25) (1,25) (1,25) (1,25) (1,25)
F value 1.71 3.02 0.80 1.15 0.002 0.41 6.99
p value .203 .095 .380 .293 .962 .528 .014
η2 0.06 0.11 0.03 0.04 <0.001 0.02 0.22
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